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The Maximal Modulus of an Algebraic Integer 

By David W. Boyd* 

Abstract. The maximal modulus of an algebraic integer is the absolute value of its largest 
conjugate. We compute the minimum of the maximal modulus of all algebraic integers of 
degree d which are not roots of unity, for d at most 12. The computations suggest that the 
minimum is never attained for a reciprocal algebraic integer. The truth of this conjecture 
would show that the conjecture of Schinzel and Zassenhaus follows from a theorem of Smyth. 
We further test our conjecture by computing the minimum of the maximal modulus of all 
reciprocal algebraic integers of degree d which are not roots of unity, for d at most 16. Our 
computations strongly suggest that the best constant in the conjecture of Schinzel and 
Zassenhaus is 1.5 log (3, where 0( is the smallest P.V. number. They also shed some light on a 
recent conjecture of Lind concerning the Perron numbers. 

1. Introduction. Let a be an algebraic integer of degree d, with conjugates 

al.* .a As usual, let fi = maxlail denote the maximal modulus of a. Clearly, 
ia > 1, and a theorem of Kronecker [4] tells us that 1[a = 1 if and only if a is a root 
of unity. Schinzel and Zassenhaus [9] have made the following conjecture: 

CONJECTURE (SZ). There is a constant cl > 0 such that if a is not a root of unity, 
then [I a 1 + cl/d. 

In this paper we describe the computation of the minimum of I-] for a of degree d, 
with d < 12. The results suggest a conjecture which, when combined with a result of 
Smyth [10], implies (SZ). Our results also suggest that the best constant cl in (SZ) 
should be 3 log 00, where 00 = 1.3247... is the smallest Pisot number (the real zero 
of x3- x - 1). 

The results also shed some light on a conjecture of Lind concerning the "Perron 
numbers" introduced in [6] and [7]. 

2. Conjectures Implying (SZ). The best results to date concerning (SZ) have been 
obtained as corollaries to results on a question of Lehmer. Let M( a) = 

H/.d=. max(laiI, 1) denote the Mahler measure of a. Lehmer [5] asked: 
(L) Does there exist a constant c0 > 1 so that M(a) > c0 for all a not roots of 

unity? 
A positive answer to (L) would prove (SZ), for, if v is the number of ai satisfying 

Jail > 1, then clearly M(a) < la Thus, 

ki]> M(a)l/V> M(a)l/dld> c> 1 + c1/d. 
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TABLE 1 

Extreme values of [a for fixed degree d. The minimum m (d) is attained for a with 

minimal polynomial Pd(x) having v roots outside the unit circle. 

d v m(d) Pd (X) 

1 1 2 x-2 
2 2 21/2 1.4142135624 x2 - 2, + x + 2orx2 + 2x + 2 
3 2 91/2 1.1509639253 + X-1 
4 2 1.1837518186 x4 + x3 +1 or x4+ x + 1 
5 4 1.1216451786 X _ X-3+ X2 + X -1 

6 4 8i/4 - 1.0728298678 P3(x2) 
7 4 1.0928455996 X7 + X6 + X3 -1 

n8 6 1.0756204773 X + X7 + x- X + 1 
9 6 =1/6- 1.0479821944 P3(x3) 

10 8 1.0590775130 P5(x2) 
11 8 1.0571248570 x" ? A0 + X7 + - ? 2 -1 

12 8 0(l/ = 1.0357750083 P3(x4) 

However, it is conceivable that (SZ) could be true, and yet the answer to (L) could 
be negative. 

Smyth [10] proved that if a is nonreciprocal (i.e., a-1 is not a conjugate of a for 
any i), then M(a) > 00. Hence, [a > 1 + (log 00)/d for nonreciprocal a. Smyth also 
pointed out that the a with minimal polynomial x3k + x2k - 1 (so d = 3k), has 
[a = 9o/(2k) = 0o3/(2d) so one cannot improve this beyond r[l > 1 + 3(log 00)/d. 

On the other hand, it is known that, for reciprocal a, one can definitely have 
1 < M(a) < 0S. Indeed, Lehmer [5] provided an example ao with d = 10 for which 

M(ao) = 1.17628... < 00. It is widely felt that ao may be the best constant in (L). 
There are many other examples in [1]. For reciprocal a, Dobrowolski [3] has shown 
that 

M(a) > 1 + C(loglogd)3 

from which a result slightly weaker than (SZ) follows. 
It should be pointed out that the known reciprocal a with small measure (as listed 

in [1], for example) do not have [aI particularly small, since v is too small. For 
example, Lehmer's 10th degree a0 has v = 1 and, hence, [a = M(ao) = 1.17628.... 

Even the naive guess a = F2 has fal =1.07177..., while the minimum of ia for 
degree 10 is 1.05907..., which is considerably smaller (see Table 1). 

Let m(d) denote the minimum of lal over a of degree d which are not roots of 
unity. It is easy to see that this is an attained minimum. Let an a attaining m(d) be 
called extremal. Then our computations, as summarized in Tables 1 and 2 suggest 
the following: 

CONJECTURE (A). Extremal a are always nonreciprocal. 

CONJECTURE (B). If d= 3k, then the extremal a has minimal polynomial x3k + 

x - 1 (orx3k x2k 1) 

CONJECTURE (C). The extremal a of degree d have v - 2 d as d -- oo. 
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TABLE 2 

Extreme values of Ial for reciprocal a of even degree d. The minimum mR(d) is 
attained for an a with minimal polynomial Rd(x) having v roots outside the unit circle. 

d v mR(d) Rd(x) 

2 1 2.6180339887 1 -3 1 
4 2n 1.5392223384 1 1 3 1 1 
6 2 1.3216631562 1 2 2 1 2 2 1 
8 2 1.1692830298 1 0 0 1 1 1 0 0 1 
10 2 1.1257148215 10110101101 
12 2 1.1080548536 1 1 1 0-1 -1 -1 -1 -1 0 1 1 1 
14 4 1.0939016857 100011010110001 
16 4 1.0813339123 R,(x2) 

Perhaps (C) seems far-fetched on the basis of Table 1. However, the evidence for 
(B) is clear, and it does appear that v(d) is monotone. These would imply (C). 

Note that (A) implies (SZ) with cl = log 09, while (C) implies that the best 
constant is c = 

3 log 9. 

Since the computation for d = 12 was rather lengthy, it is not feasible to extend it 
to d > 13. However, we were able to test (A) up to d = 16 by computing mR(d), the 
minimum of [a over reciprocal a of degree d which are not roots of unity. Since 
mR(2k) > m(k)"2 > m(2k) for k < 8, we thus have verified (A) for d < 16. 

3. Perron Numbers. Lind [6] has defined a Perron number to be a real algebraic 
integer a = a, such that a, > Jail for i > 2. 

By the Perron-Frobenius theorem, if A is a matrix with nonnegative integer entries 
and such that Ak has positive entries for some k, then the dominant eigenvalue a of 
A is a Perron number. Lind has proved the converse [6], [7]. (Note that the 
dimension of A may have to be larger than deg(a), e.g., if a has negative trace.) 

In private correspondence, Lind conjectured that the smallest Perron number of 
degree d > 2 should have minimal polynomial xd - x - 1. This turns out to be true 
if d = 2, 3, 4, 6, 7, 8, 10, 12, but false if d > 3 and d 3 or 5 (mod6). A slight 
modification of the conjecture is true up to degree 12. 

The reason for the modification is the following: It is known [8] that if (n, m) = 1, 
then x'1 - x n - 1 is either irreducible or the product of x2 - x + 1 and an 
irreducible polynomial. (One can now derive this in a few lines from Smyth's 
theorem [10] and the fact that M(x' - xm - 1) < V3 < 092.) For (n, m) = 1, x - 

X n-1 can have the factor x2-x + 1 only if n-1 or 5 (mod6) and m + n-3 
(mod 6). Let us now compare the size of a, the positive root of xd - x - 1, with , 
the positive root of xd+2- Xm - 1. If d > 3 and m < 4, then 

d+2 _ am - > a d+2 _ a4 a2(a + 1) a4 

= -(a - 1)(a3 - a - 1) > 0, 

since a3 - a - 1 < ad - a - 1 = 0. Thus / < a. 

On the other hand, if m > 5, then 
ad+2 _ am - ad+2 a 5 a2(a + 1) a- 

= -(a2 - 1)(a3 - 1) < 0; 

so /> a. 
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Thus, if m < 4 and xd+2 - -1 is divisible by x - x + 1, then /3 is of degree 
d, and [ = 3 <[ i= a. This occurs exactly when d 5 (mod6), and m = 2 or 
d 3 (mod6), and m = 4. 

This suggests the following modification of Lind's conjecture. It has been verified 
for d < 12: 

CONJECTURE (D). The smallest Perron number of degree d > 2 has minimal 
polynomial 

xd - x - 1 if d 7t 3, 5 (mod6), 
(x d+2-x4-1)/(x2-x+1) if d 3(mod6), 

(x d+2 - X2 1)/(X2 - X + 1) if d 5 (mod6). 

(N.B. -X4-1 = (X2-X + 1)(x3-X-1).) 

4. The Computations. The method is based on similar principles to those used in 
[1], but is somewhat simpler. Given a bound B > 1, we wish to generate the set R of 
polynomials of degree d all of whose zeros are at most B in modulus. From this 
finite set we will eliminate the cyclotomic polynomials and the reducible polynomi- 
als. If B has been chosen sufficiently large, the remaining set will be nonempty and 
will contain the minimal polynomials of the extremal a for ia and the smallest 
Perron number of degree d. For d > 3, the choice B = (2 + 1/d )1/d suffices, since 
Bd- B - 1 > 0 and Bd - 2 > 0. In practice we chose B to be a "round" number 
approximately equal to this value. 

Let P(x) = xd + a xd-l + + ad have zeros ai,,. . ,Od, and let Sk = Ed=l k 

for k = 1, 2. If all jaij < B, then, clearly, 

(1 ) lSkI dBk, k =1, 2.... 

In addition, we have [1, Lemma 1] 

(2) dBk/2 + (2/d )Sk/2 < Sk k = 2,4,.... 

By Newton's identities, the Sk and ak are related by 

(3) Sk+a1Sk1+ + ak lSl+ kak =O, k > d, 

(4) ~~~Sk + lSk-_1 + * d Sk-d = ?' k > d . 

According to (3), (S1,... , S) is uniquely determined from (a1,... , a nd vice versa 
for k < d. If the a, are integers, then a..., .a determine Sk (mod k). Hence, the 
number of P satisfying (1) for k < d is approximately 

Nd 2 2dBk d (2eVd)d H 2 _ (2eBd/2)(2e 
k=l k 

if B 21 
If we apply (2) for k < d, then we reduce this by a factor of approximately 

(2/3)d/2. To see this, note that, e.g., the number of pairs (Sl, S2) which satisfy (1) 
and (2) is approximately 

B(2dB2 () )dx (2 dB)(2 dB) 

The factor (2/3)'11 is not quite correct for n-tuples (Sl, S2, S4,...,Sm) with 
m = 2'- For triples (S , S2, S4), the correct factor, for example, should be 
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(2/3)- (24/35), since 

fdRdxfl dB2 + (2dB - (4d') Y) dy =3 35 (2d(2d2dB2 )(2dB4). 
-dB -dB2+(2/d)x2 UI - 

However, the approximation is good enough for these purposes. 
Thus, we are ultimately faced with investigating about (4e/ V;)d _ (6.28)d poly- 

nomials, so it is apparent that only relatively small d will be feasible. 
Of course, one can use some symmetry and insist that S1 > 0. For d -12 and 

B = 1.063, the size of the set is thus predicted to be about 

1(2) 3.93 x W 
2(3 ) 12 3X3X1. 

The exact size of the set was in fact 451 682 220. 
If we use no other information than (1) and (2) for k < d, then it is clear that all 

polynomials which appear in this set must be investigated further. Thus the size of 
this set does play a critical role in determining the running time of the algorithm. 
However, it is clear that one should not simply solve all such P to determine whether 
P is in R. The inequalities (1) for k > d provide further tests which should provide 
the same sort of information more inexpensively. 

Let us denote by Rd the set of P satisfying S1 > 0 and (1) and (2) for k < d. For 
n > d, let RAn denote the set of P in Rd satisfying ad # 0 and (1) for k < n. Clearly, 
the R,1 are nested, and their intersection is R, since 

lim sup (log1ISI/kl) = log [a. 

Thus for sufficiently large N, the set RN is not much larger than R, and we can 
afford simply to solve all P inRN. The optimal choice of N depends on the rate of 
decay IR,,1 and on the time t1 for applying the test (1) for a given k = n relative to 
the time t2 for solving P. Clearly, t1 << t2. Of course, since we naturally generate the 
P's one at a time without storing them, we do not know the values of IR,I until after 
the computation is complete. Thus, optimizing the choice of N is not feasible, but 
N = 3d worked well in practice. 

As a sample of the numbers involved, for d = 12, B = 1.063 we have 

IR121 = 451,682,220, JR 231 = 37,019, JR 351 = 4931, 

1R131 = 23,746,503, IR241 = 28,277, IR361= 4435. 

1R141 = 4,987,914, 

In fact, IRI= 867, of which 811 are cyclotomic, 26 are reducible, and 30 are 
irreducible. 

The algorithm then is simply to generate each P in Rd and apply the sequence of 
tests (1) sequentially for k = d + 1,...,N. The surviving P are in RN' We then test 
for small cyclotomic factors (of order 7 or less) and then solve P using the 
QR-algorithm. Using the ideas in [2], one can get a priori lower bounds on [i for 
noncyclotomic P, so we can reject any P which have [aj < 1.0005 or Il > B. The 
remaining P are generally irreducible, but reducibility is easily checked, since we 
apply the algorithm in order of increasing d, so we have a list of possible factors. 
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To save time in generating Rd, the bounds in (1) and (2) are precomputed so that, 
for example, the test (2) simply requires testing Sk > C(k/2, Sk/2), where C(i, j) is 
a precomputed array. Thus, only integer arithmetic is required when applying (1) 
and (2). 

For reciprocal P of even degree, since ad k = ak, P is determined completely by 
S1, ... ., Sd72. Writing m = d/2, we see that the initial set R m contains approximately 

1 (4m) Bm2/2(2 Am/2 

2 m! \3! 

polynomials. For d = 16 and B = 1.09, this is about 4.25 x 107. The actual number 
generated was 46,345,943. 

The same choice N = 3d was made and the same procedure followed in processing 
the set R In this case, a number of reducible polynomials of the form QQ* 
appeared, where Q*(x) = ?xd/2Q(xl). These correspond to a of degree d/2 with 

< Fa1 
The running time was essentially proportional to the size of the initial set of 

polynomials. For example, the case d = 12, B = 1.063 required 4.69 hours of CPU 
time on an Amdahl 470 V7A. 

5. The Tables. Tables 3 and 4 appear as an appendix in the supplements section of 
this issue. If Pl(x) = Q(xs) and P2(x) = ? Q(-xs) for some s > 1, then we say P1 
and P2 are equivalent. Since ia is the same for P1 and P2, only one of such a pair is 
listed in the tables. Generally, it is the one in which the first nonvanishing ai is 
positive, except when an ai attaining [5I is real, in which case we choose the sign so 
a, > 0. 

All the tables exhibit ai = [ei+, where (A is given in degrees and chosen minimally 
so that 0 < (A < 180. The minimal polynomial of a is exhibited as a vector a, ... ad 

except in Table 1. 
Table 1 gives a list of extrema for la1 for degrees 1 < d < 12. Table 2 gives the 

corresponding list for reciprocal polynomials of even degrees 2 < d < 16. 
Table 3 gives a complete list of inequivalent a of degree d with [a smaller than the 

given bound B. Perron numbers are indicated by a "P" in the column preceding v. 
Table 4 gives the corresponding lists for reciprocal polynomials. (Perron numbers 
are not marked.) 
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